It includes DNI, DHI and GHI indices for the Clear Sky and Cloudy Sky models. With our weather API you get permanent access to current weather data, historical data, weather forecasts, as well as industry-specific parameters and indices. Detailed forecasts available by city name, city ID, geographic coordinates or postal/ZIP code. The first part of the sets up some variables to customize the weather data that is entered. High around 60F. This free PC software is developed for Windows XP/7/8/10/11 environment, 32-bit version. Insert . Devon TQ2 7FF Use `zero_division` parameter to control this behavior.\n _warn_prf(average, modifier, msg_start, len(result))\n", "text": "[10 10 10 9 4 4]\n 0\n0 \n3 6804\n4 1966\n9 7225\n10 10142\n\n Accuracy Score\n0.9508742395837319\n\nClassification Report\n precision recall f1-score support\n\n 0 0.00 0.00 0.00 217\n 1 0.00 0.00 0.00 152\n 2 0.00 0.00 0.00 110\n 3 0.99 0.99 0.99 6766\n 4 0.74 0.79 0.77 1828\n 5 0.00 0.00 0.00 6\n 6 0.00 0.00 0.00 4\n 7 0.00 0.00 0.00 7\n 8 0.00 0.00 0.00 6\n 9 0.92 0.96 0.94 6965\n 10 0.99 0.99 0.99 10076\n\n accuracy 0.95 26137\n macro avg 0.33 0.34 0.34 26137\nweighted avg 0.93 0.95 0.94 26137\n\nConfusion Matrix\n[[ 0 0 0 0 209 0 0 0 0 8 0]\n [ 0 0 0 6 0 0 0 0 0 123 23]\n [ 0 0 0 13 15 0 0 0 0 55 27]\n [ 0 0 0 6720 0 0 0 0 0 0 46]\n [ 0 0 0 1 1453 0 0 0 0 339 35]\n [ 0 0 0 0 2 0 0 0 0 2 2]\n [ 0 0 0 0 2 0 0 0 0 2 0]\n [ 0 0 0 2 0 0 0 0 0 0 5]\n [ 0 0 0 6 0 0 0 0 0 0 0]\n [ 0 0 0 0 285 0 0 0 0 6678 2]\n [ 0 0 0 56 0 0 0 0 0 18 10002]]\n", "text": "[10 10 10 9 4 4]\n 0\n0 \n3 6771\n4 1956\n9 7247\n10 10163\n\n Accuracy Score\n0.9520602976623178\n\nClassification Report\n precision recall f1-score support\n\n 0 0.00 0.00 0.00 217\n 1 0.00 0.00 0.00 152\n 2 0.00 0.00 0.00 110\n 3 0.99 0.99 0.99 6766\n 4 0.74 0.79 0.77 1828\n 5 0.00 0.00 0.00 6\n 6 0.00 0.00 0.00 4\n 7 0.00 0.00 0.00 7\n 8 0.00 0.00 0.00 6\n 9 0.92 0.96 0.94 6965\n 10 0.99 1.00 0.99 10076\n\n accuracy 0.95 26137\n macro avg 0.33 0.34 0.34 26137\nweighted avg 0.94 0.95 0.94 26137\n\nConfusion Matrix\n[[ 0 0 0 0 209 0 0 0 0 8 0]\n [ 0 0 0 6 0 0 0 0 0 123 23]\n [ 0 0 0 12 7 0 0 0 0 63 28]\n [ 0 0 0 6724 0 0 0 0 0 0 42]\n [ 0 0 0 1 1451 0 0 0 0 342 34]\n [ 0 0 0 0 2 0 0 0 0 2 2]\n [ 0 0 0 0 2 0 0 0 0 2 0]\n [ 0 0 0 2 0 0 0 0 0 0 5]\n [ 0 0 0 6 0 0 0 0 0 0 0]\n [ 0 0 0 0 285 0 0 0 0 6680 0]\n [ 0 0 0 20 0 0 0 0 0 27 10029]]\n", "text": "[1 1 1 0 0 0]\n 0\n0 \n0 2977\n1 19729\n3 1052\n4 9\n5 239\n6 35\n7 1862\n8 19\n10 215\n\n Accuracy Score\n0.05543865018938669\n\nClassification Report\n precision recall f1-score support\n\n 0 0.07 1.00 0.14 217\n 1 0.01 1.00 0.02 152\n 2 0.00 0.00 0.00 110\n 3 1.00 0.16 0.27 6766\n 4 0.00 0.00 0.00 1828\n 5 0.01 0.33 0.02 6\n 6 0.06 0.50 0.10 4\n 7 0.00 1.00 0.01 7\n 8 0.26 0.83 0.40 6\n 9 0.00 0.00 0.00 6965\n 10 0.06 0.00 0.00 10076\n\n accuracy 0.06 26137\n macro avg 0.13 0.44 0.09 26137\nweighted avg 0.28 0.06 0.07 26137\n\nConfusion Matrix\n[[ 217 0 0 0 0 0 0 0 0 0 0]\n [ 0 152 0 0 0 0 0 0 0 0 0]\n [ 13 86 0 0 6 1 3 1 0 0 0]\n [ 0 5499 0 1051 0 0 0 0 14 0 202]\n [1640 129 0 0 0 15 20 24 0 0 0]\n [ 4 0 0 0 0 2 0 0 0 0 0]\n [ 2 0 0 0 0 0 2 0 0 0 0]\n [ 0 0 0 0 0 0 0 7 0 0 0]\n [ 0 0 0 1 0 0 0 0 5 0 0]\n [1101 5848 0 0 0 5 10 1 0 0 0]\n [ 0 8015 0 0 3 216 0 1829 0 0 13]]\n", "text": "[9 9 9 9 9 9]\n 0\n0 \n3 19\n7 661\n8 1235\n9 22770\n10 1452\n\n Accuracy Score\n0.3204269809082909\n\nClassification Report\n precision recall f1-score support\n\n 0 0.00 0.00 0.00 217\n 1 0.00 0.00 0.00 152\n 2 0.00 0.00 0.00 110\n 3 0.00 0.00 0.00 6766\n 4 0.00 0.00 0.00 1828\n 5 0.00 0.00 0.00 6\n 6 0.00 0.00 0.00 4\n 7 0.00 0.29 0.01 7\n 8 0.00 1.00 0.01 6\n 9 0.31 1.00 0.47 6965\n 10 0.97 0.14 0.24 10076\n\n accuracy 0.32 26137\n macro avg 0.12 0.22 0.07 26137\nweighted avg 0.45 0.32 0.22 26137\n\nConfusion Matrix\n[[ 0 0 0 0 0 0 0 0 0 217 0]\n [ 0 0 0 0 0 0 0 0 0 152 0]\n [ 0 0 0 0 0 0 0 2 0 103 5]\n [ 0 0 0 0 0 0 0 18 1228 5520 0]\n [ 0 0 0 0 0 0 0 1 0 1791 36]\n [ 0 0 0 0 0 0 0 0 0 4 2]\n [ 0 0 0 0 0 0 0 0 0 4 0]\n [ 0 0 0 0 0 0 0 2 0 0 5]\n [ 0 0 0 0 0 0 0 0 6 0 0]\n [ 0 0 0 0 0 0 0 0 0 6964 1]\n [ 0 0 0 19 0 0 0 638 1 8015 1403]]\n", "text": " precision recall f1-score support\n\n 0 0.00 0.00 0.00 217\n 1 0.00 0.00 0.00 152\n 2 0.00 0.00 0.00 110\n 3 1.00 0.12 0.21 6766\n 4 0.00 0.00 0.00 1828\n 5 0.00 0.00 0.00 6\n 6 0.00 0.00 0.00 4\n 7 0.00 0.00 0.00 7\n 8 0.00 0.00 0.00 6\n 9 0.00 0.00 0.00 6965\n 10 0.40 1.00 0.57 10076\n\n accuracy 0.42 26137\n macro avg 0.13 0.10 0.07 26137\nweighted avg 0.41 0.42 0.27 26137\n\nConfusion Matrix\n[[ 0 0 0 0 0 0 0 0 0 0 217]\n [ 0 0 0 0 0 0 0 0 0 0 152]\n [ 0 0 0 0 0 0 0 0 0 0 110]\n [ 0 0 0 801 0 0 0 0 0 0 5965]\n [ 0 0 0 0 0 0 0 0 0 0 1828]\n [ 0 0 0 0 0 0 0 0 0 0 6]\n [ 0 0 0 0 0 0 0 0 0 0 4]\n [ 0 0 0 0 0 0 0 0 0 0 7]\n [ 0 0 0 0 0 0 0 0 0 0 6]\n [ 0 0 0 0 0 0 0 0 0 0 6965]\n [ 0 0 0 0 0 0 0 0 0 0 10076]]\n", "text": "[10 10 10 3 3 3]\n 0\n0 \n3 4350\n4 2037\n9 6946\n10 12804\n\n Accuracy Score\n0.2898190304931706\n\nClassification Report\n precision recall f1-score support\n\n 0 0.00 0.00 0.00 217\n 1 0.00 0.00 0.00 152\n 2 0.00 0.00 0.00 110\n 3 0.00 0.00 0.00 6766\n 4 0.00 0.00 0.00 1828\n 5 0.00 0.00 0.00 6\n 6 0.00 0.00 0.00 4\n 7 0.00 0.00 0.00 7\n 8 0.00 0.00 0.00 6\n 9 0.31 0.31 0.31 6965\n 10 0.42 0.54 0.47 10076\n\n accuracy 0.29 26137\n macro avg 0.07 0.08 0.07 26137\nweighted avg 0.25 0.29 0.27 26137\n\nConfusion Matrix\n[[ 0 0 0 217 0 0 0 0 0 0 0]\n [ 0 0 0 0 0 0 0 0 0 2 150]\n [ 0 0 0 21 3 0 0 0 0 38 48]\n [ 0 0 0 0 1246 0 0 0 0 1989 3531]\n [ 0 0 0 1696 3 0 0 0 0 112 17]\n [ 0 0 0 6 0 0 0 0 0 0 0]\n [ 0 0 0 4 0 0 0 0 0 0 0]\n [ 0 0 0 3 4 0 0 0 0 0 0]\n [ 0 0 0 0 6 0 0 0 0 0 0]\n [ 0 0 0 1117 0 0 0 0 0 2181 3667]\n [ 0 0 0 1286 775 0 0 0 0 2624 5391]]\n", "text": "[10 10 10 9 4 4]\n 0\n0 \n3 6783\n4 2141\n8 7\n9 7033\n10 10173\n\n Accuracy Score\n0.9541645942533573\n\nClassification Report\n precision recall f1-score support\n\n 0 0.00 0.00 0.00 217\n 1 0.00 0.00 0.00 152\n 2 0.00 0.00 0.00 110\n 3 1.00 1.00 1.00 6766\n 4 0.71 0.83 0.77 1828\n 5 0.00 0.00 0.00 6\n 6 0.00 0.00 0.00 4\n 7 0.00 0.00 0.00 7\n 8 0.71 0.83 0.77 6\n 9 0.93 0.94 0.94 6965\n 10 0.99 1.00 1.00 10076\n\n accuracy 0.95 26137\n macro avg 0.40 0.42 0.41 26137\nweighted avg 0.94 0.95 0.95 26137\n\nConfusion Matrix\n[[ 0 0 0 0 209 0 0 0 0 8 0]\n [ 0 0 0 6 1 0 0 0 0 122 23]\n [ 0 0 0 11 14 0 0 0 0 57 28]\n [ 0 0 0 6763 0 0 0 0 2 0 1]\n [ 0 0 0 0 1523 0 0 0 0 268 37]\n [ 0 0 0 0 2 0 0 0 0 2 2]\n [ 0 0 0 0 2 0 0 0 0 2 0]\n [ 0 0 0 0 0 0 0 0 0 0 7]\n [ 0 0 0 1 0 0 0 0 5 0 0]\n [ 0 0 0 0 390 0 0 0 0 6574 1]\n [ 0 0 0 2 0 0 0 0 0 0 10074]]\n", "text": "[10 10 10 4 4 4]\n 0\n0 \n3 5219\n4 3259\n10 17659\n\n Accuracy Score\n0.6367984083865784\n\nClassification Report\n precision recall f1-score support\n\n 0 0.00 0.00 0.00 217\n 1 0.00 0.00 0.00 152\n 2 0.00 0.00 0.00 110\n 3 0.99 0.76 0.86 6766\n 4 0.51 0.92 0.66 1828\n 5 0.00 0.00 0.00 6\n 6 0.00 0.00 0.00 4\n 7 0.00 0.00 0.00 7\n 8 0.00 0.00 0.00 6\n 9 0.00 0.00 0.00 6965\n 10 0.56 0.97 0.71 10076\n\n accuracy 0.64 26137\n macro avg 0.19 0.24 0.20 26137\nweighted avg 0.51 0.64 0.54 26137\n\nConfusion Matrix\n[[ 0 0 0 0 217 0 0 0 0 0 0]\n [ 0 0 0 3 0 0 0 0 0 0 149]\n [ 0 0 0 13 17 0 0 0 0 0 80]\n [ 0 0 0 5153 0 0 0 0 0 0 1613]\n [ 0 0 0 1 1678 0 0 0 0 0 149]\n [ 0 0 0 0 4 0 0 0 0 0 2]\n [ 0 0 0 0 4 0 0 0 0 0 0]\n [ 0 0 0 2 0 0 0 0 0 0 5]\n [ 0 0 0 6 0 0 0 0 0 0 0]\n [ 0 0 0 0 1117 0 0 0 0 0 5848]\n [ 0 0 0 41 222 0 0 0 0 0 9813]]\n", "text": " precision recall f1-score support\n\n 0 0.50 0.01 0.03 217\n 1 0.00 0.00 0.00 152\n 2 0.91 0.19 0.32 110\n 3 1.00 1.00 1.00 6766\n 4 0.74 0.84 0.79 1828\n 5 1.00 0.33 0.50 6\n 6 0.00 0.00 0.00 4\n 7 0.78 1.00 0.88 7\n 8 0.83 0.83 0.83 6\n 9 0.94 0.96 0.95 6965\n 10 0.99 1.00 1.00 10076\n\n accuracy 0.96 26137\n macro avg 0.70 0.56 0.57 26137\nweighted avg 0.95 0.96 0.95 26137\n\nConfusion Matrix\n[[ 3 0 0 0 205 0 0 0 0 9 0]\n [ 0 0 0 6 0 0 0 0 0 123 23]\n [ 0 0 21 11 7 0 0 0 0 48 23]\n [ 0 0 0 6765 0 0 0 0 1 0 0]\n [ 3 0 0 0 1534 0 0 0 0 279 12]\n [ 0 0 0 0 2 2 0 0 0 2 0]\n [ 0 0 0 0 2 0 0 0 0 2 0]\n [ 0 0 0 0 0 0 0 7 0 0 0]\n [ 0 0 0 1 0 0 0 0 5 0 0]\n [ 0 0 1 0 301 0 0 0 0 6662 1]\n [ 0 0 1 1 11 0 0 2 0 0 10061]]\n", "text": " 0\n0 \n0 6\n2 26\n3 6784\n4 2062\n5 2\n7 11\n8 6\n9 7125\n10 10115\n\n Accuracy Score\n0.9586027470635498\n\nClassification Report\n precision recall f1-score support\n\n 0 0.50 0.01 0.03 217\n 1 0.00 0.00 0.00 152\n 2 0.81 0.19 0.31 110\n 3 1.00 1.00 1.00 6766\n 4 0.74 0.84 0.79 1828\n 5 1.00 0.33 0.50 6\n 6 0.00 0.00 0.00 4\n 7 0.64 1.00 0.78 7\n 8 0.83 0.83 0.83 6\n 9 0.94 0.96 0.95 6965\n 10 0.99 1.00 1.00 10076\n\n accuracy 0.96 26137\n macro avg 0.68 0.56 0.56 26137\nweighted avg 0.95 0.96 0.95 26137\n\nConfusion Matrix\n[[ 3 0 0 0 205 0 0 0 0 9 0]\n [ 0 0 0 6 0 0 0 0 0 123 23]\n [ 0 0 21 11 7 0 0 0 0 48 23]\n [ 0 0 0 6765 0 0 0 0 1 0 0]\n [ 3 0 0 0 1534 0 0 0 0 279 12]\n [ 0 0 0 0 2 2 0 0 0 2 0]\n [ 0 0 0 0 2 0 0 0 0 2 0]\n [ 0 0 0 0 0 0 0 7 0 0 0]\n [ 0 0 0 1 0 0 0 0 5 0 0]\n [ 0 0 1 0 301 0 0 0 0 6662 1]\n [ 0 0 4 1 11 0 0 4 0 0 10056]]\n", "text": "[10 10 10 9 4 4]\n 0\n0 \n0 4\n2 21\n3 6785\n4 2043\n5 2\n7 8\n8 5\n9 7139\n10 10130\n\n Accuracy Score\n0.9591383861958144\n\nClassification Report\n precision recall f1-score support\n\n 0 0.50 0.01 0.02 217\n 1 0.00 0.00 0.00 152\n 2 0.95 0.18 0.31 110\n 3 1.00 1.00 1.00 6766\n 4 0.75 0.84 0.79 1828\n 5 1.00 0.33 0.50 6\n 6 0.00 0.00 0.00 4\n 7 0.88 1.00 0.93 7\n 8 1.00 0.83 0.91 6\n 9 0.93 0.96 0.95 6965\n 10 0.99 1.00 1.00 10076\n\n accuracy 0.96 26137\n macro avg 0.73 0.56 0.58 26137\nweighted avg 0.95 0.96 0.95 26137\n\nConfusion Matrix\n[[ 2 0 0 0 206 0 0 0 0 9 0]\n [ 0 0 0 6 0 0 0 0 0 123 23]\n [ 0 0 20 11 7 0 0 0 0 49 23]\n [ 0 0 0 6766 0 0 0 0 0 0 0]\n [ 2 0 0 0 1528 0 0 0 0 285 13]\n [ 0 0 0 0 2 2 0 0 0 2 0]\n [ 0 0 0 0 2 0 0 0 0 2 0]\n [ 0 0 0 0 0 0 0 7 0 0 0]\n [ 0 0 0 1 0 0 0 0 5 0 0]\n [ 0 0 0 0 295 0 0 0 0 6669 1]\n [ 0 0 1 1 3 0 0 1 0 0 10070]]\n", "text": "[10 10 10 9 4 4]\n 0\n0 \n0 6\n2 21\n3 6785\n4 2042\n5 2\n7 8\n8 5\n9 7139\n10 10129\n\n Accuracy Score\n0.9591001262577955\n\nClassification Report\n precision recall f1-score support\n\n 0 0.50 0.01 0.03 217\n 1 0.00 0.00 0.00 152\n 2 0.95 0.18 0.31 110\n 3 1.00 1.00 1.00 6766\n 4 0.75 0.84 0.79 1828\n 5 1.00 0.33 0.50 6\n 6 0.00 0.00 0.00 4\n 7 0.88 1.00 0.93 7\n 8 1.00 0.83 0.91 6\n 9 0.93 0.96 0.95 6965\n 10 0.99 1.00 1.00 10076\n\n accuracy 0.96 26137\n macro avg 0.73 0.56 0.58 26137\nweighted avg 0.95 0.96 0.95 26137\n\nConfusion Matrix\n[[ 3 0 0 0 205 0 0 0 0 9 0]\n [ 0 0 0 6 0 0 0 0 0 123 23]\n [ 0 0 20 11 7 0 0 0 0 49 23]\n [ 0 0 0 6766 0 0 0 0 0 0 0]\n [ 3 0 0 0 1527 0 0 0 0 285 13]\n [ 0 0 0 0 2 2 0 0 0 2 0]\n [ 0 0 0 0 2 0 0 0 0 2 0]\n [ 0 0 0 0 0 0 0 7 0 0 0]\n [ 0 0 0 1 0 0 0 0 5 0 0]\n [ 0 0 0 0 295 0 0 0 0 6669 1]\n [ 0 0 1 1 4 0 0 1 0 0 10069]]\n".
Ed Sheeran Blow,
Oak Island Treasure Found 2022 Spoiler,
Us Dept Hhs Package In The Mail 2022,
Amilian Reversible L Shape Desk,
Articles W